
Program synthesis can automatically generate high quality
code to solve problems in complex domains from clear,
modular specifications. For well-understood problem
domains and target platforms, automatic synthesis yields
very substantial benefits in code development time and
quality. For less well understood domains or target
platforms, it is generally necessary to manually edit
synthesized code, reducing the benefits of synthesis.

PROBLEM SOLUTION

TECHNOLOGY

We extended a synthesis system to allow users to
augment the mathematical model with a
specification of additional code necessary for the
application. The extension enables automatic
synthesis of code for a wide range of real-world
problems. In the domain of state estimation, for
example, this includes:
• arbitrary mode changes,
• combinations of Kalman filters with non-Kalman

filter code.

Adaptable Program Synthesis

automatic
synthesis

Mathematical model +
application-specific code

specification

accurate
estimates

AutoFilter is a program synthesis system developed in
the Robust Software Engineering group at NASA Ames.
AutoFilter generates Kalman filter code from
specifications of state estimation problems, e.g. for
GN&C. We adapted AutoFilter to synthesize components
for state estimation, and implemented a compiler for a C-
like language interfaced to the synthesized code. We
used the modified system in a case study, synthesizing
code for a complex FIDO rover estimator which combines
several Kalman filters with non Kalman filter code. When
tested in simulation, state estimates agreed with those
from hand-written code (graph has 6 lines, but 3 from
synthesized code overlap 3 from hand-written code).

Explanation of Accomplishment
• POC: Julian Richardson (RIACS/USRA, RSE Group, Code TI, julianr@email.arc.nasa.gov)
• Work funded by: RSO Program Synthesis.
• Background: Domain-specific program synthesis, e.g. as implemented in AutoBayes (data analysis)

and AutoFilter (state estimation – Kalman filters) can generate high quality code to solve problems in
complex domains from clear, modular specifications. Commercial program synthesizers/generators
typically yield 3-5x reductions in development time, 2x reductions in errors, and reduced maintenance
costs. In a NASA context we can offer even greater gains, for example the complete elimination of
entire classes of bugs through certification. Discussion with JPL GN&C experts indicated that
applications in the GN&C domain frequently require modifications to the standard Kalman filter
algorithms, for example to handle bad sensor data, or perform a part of the algorithm in a non-standard
way. These can be achieved by manual modifications to synthesized code, but this reduces the
benefits arising from synthesis. For example, whenever the specification is changed and the code
resynthesized, these edits would need to be redone – time consuming and error-prone work.

• Accomplishment: We have extended the AutoFilter synthesis system to allow users to specify
application-specific code which is interleaved with the domain-specific synthesized code. Synthesis is
automatic. This significantly extends the scope of the synthesis system. We adapted AutoFilter so that
for each specification, it generates a library of components for implementing that specification, rather
than a single synthesized program. We designed and implemented a compiler for an imperative
language, which allows the user to combine components from the synthesized library with their own
code, and so implement algorithms and architectures not covered by the synthesis system. We
demonstrated the effectiveness of the approach by synthesizing a complex state estimator for the
FIDO rover. The estimator combines two Kalman filters with non Kalman filter code. The synthesized
code was compared with a state estimator written by Dr. Ed Wilson (Discovery and Systems Health).
The results of the two implementations agreed.

• Benefits: This accomplishment significantly expands the scope of automatic synthesis, potentially
extending its benefits (e.g. cost reduction, quality improvement, sustainability) to greater portions of
NASA mission applications.

• Future Work: We expect that the certification capabilities developed in the Robust Software
Engineering Group can be very effectively leveraged to ensure that the combination of hand-written
and synthesized code has desirable correctness properties (e.g. array bounds safety, variable
initialization, maintains symmetry of key matrices).

Credits: Rover image page 1 from: http://fido.jpl.nasa.gov/index48_blackrock.html

mailto:julianr@email.arc.nasa.gov
http://fido.jpl.nasa.gov/index48_blackrock.html

